SAMPLE QUESTION BANK OF A.I.

SERIAL		OPTION 1	OPTION 2	OPTION 2		
NOWIDER	QUESTION TEXT			OPTION_3		OFTION
1	What is Artificial intelligence?	Putting your intelligence into Computer	Programming with your own intelligence	Making a Machine intelligent	Playing a Game	с
2	who coined the trem Artificial Intelligence	Arthur Samule	James Slagle	Jhon McCarthy	E. F. Codd	с
3	Which one of the following is not the advantage of AI	High Speed	Digital Assistant	Accuracy	High Cost	D
4	The characteristics of the computer system capable of thinking, reasoning and learning is known is	machine intelligence	human intelligence	artificial intelligence	virtual intelligence	с
5	The succes of an intellignet behaviour of a system can be mesured with	System Test	Turing Test	Intelligent Test	Machine Test	В
6	Which one of the following application is not of AI	Education	Telsa	Siri	Netflix	A
7	Which of the following areas can not contribute to build an intelligent system?	Neuron science	Maths	Computer Science	Geology	D
8	In which year John McCarthy coined the term Artificial Intelligence?	1956	1957	1965	1959	A
9	If a robot can alter its own trajectory in response to external conditions, it is considered to be:	intelligent	Extra Ordinary	Turing Tester	Knowledge	А
10	What is the name of the computer program that simulates the thought processes of human beings	Expert reason	Expert system	Management information System	Artificial Intelligence	В
11	Which is not the commonly used programming language for Al	PROLOG	Java	LISP	Perl	D
12	is the information that the agent receives	Percept	Environment	Action	Goal	А
13	Utility based agent are the extension ofagent	Manager	Goal Based Agent	Simple Reflex Agent	Smart Agent	в
14	The major component/components for measuring the performance of problem solving	Completeness	Optimality	Time and Space complexity	All of the mentioned	D
15	What is the expansion if PEAS in task environment	Peer, Environment, Actuators, Sense	Perceiving, Environment, Actuators, Sensors	Environment, Actuators, Sensors	None of the mentioned	с

16	What kind of observing environments are present in artificial intelligence	Partial	Fully	Learning	Both Partial & Fully	D
17	Where does the performance measure is included	Rational agent	Task environment	Actuators	Sensor	В
18	An Agent observes the environment through	Sensor	SmartBox	Accuator	Effctor	А
19	How many types of agents are there in artificial intelligence?	1	2	3	4	D
20	choose action based on only current percept	Robot	Simple Reflex Agent	Smart Agent	Sensor	В
21	What kind of environment is strategic in artificial intelligence	Deterministic	Rational	Partial	Stochastic	А
22	What are the composition for agents in artificial intelligence	Program	Architecture	Both Program & Architecture	None of the mentioned	С
23	Agents behavior can be best described by	Perception sequence	Agent function	Sensors and Actuators	which agent is performing	В
24	In which agent does the problem generator is present	Learning agent	Observing agent	Reflex agent	None of the mentioned	А
25	Different learning methods does not include	Memorization	Analogy	Deduction	Introduction	D
26	Hill climbing sometimes called because it grabs a good neighbor state without thinking ahead about where to go	Needy local search	Heuristic local search	Greedy local search	Optimal local search	С
27	blind search is also called as	Uninformed search	Informed search	Simple reflex search	initial Search	A
28	A search algorithm takes as an input and returns as an output.	Input, output	Problem, solution	Solution, problem	Parameters, sequence of actions	В
29	an intellignret agent act to increase their	Knowledge	Performance measure	Database mesure	Goal Measure	В
30	Which search method takes less memory?	Breadth-First search	Depth-First Search	Optimal search	Linear Search	В

	To solve a problem which 2 phase of formulation it should pass?	Goal,Start	Goal,Problem	Path,Goal	Path,Problem	В
31		-				_
32	To solve problem using Al, Process consist of steps.	2	4	5	6	С
	Which one of the followings is not a part of process for solving	Defining the problem	Analysing the problem	Implemenation	sensorless	D
33	problem using Al				planning	
34	A* search strategy comes under	Uninformed search	Blind Search	Informed Search	Classical Search	С
35	In BFS the frontier is implemented as a queue.	FIFO	LIFO	FILO	Random	A
36	Hill climbing Search algorithm works like algorithm.	AI	A*	Hilltop	Generate and test	D
37	When is breadth-first search is optimal?	When there is less number of nodes	When all step costs are equal	When all step costs are unequal	When there is less number of agent	В
38	What is the heuristic function of greedy best-first search?	f(n) = h(n)	f(n) > h(n)	f(n) != h(n)	f(n) < h(n)	A
39	Evaluation function for A* is f(n)=+	h(n)+h(m)	h(n)+g(n)	h(n)+c(n)	g(n)+h(m)	В
40	Greedy approach in hill climbing means choosing best possible solution.	Hilltop	Complex	Otimal	Nearest	D
41	behavior means something which can be determined with set of logicla proofs and actios.	Smart	Bounded	Deterministic	Ridge	С
42	simulated annealing is an efective and general form of	Optimization	Hill climbing	Inspiration	Agent	А
43	AND/OR is implemented in the problem	Deterministic	Non-Deterministic	Otimal	Hill Climbing	В
44	returns the set of legal moves in a state.	test	actions	utility	player	В
45	A utility function is also called :	Objective function	payoff functions	none of the above	both A and B	D
46	A function defines the final numeric value for game that ends in terminal states for a player p is called	primary function	secondary function	utility function	optimum function	С
47	game tree defined by	initial state	actions	result	all of the above	D
48	In a normal search problem , the optimal solution would be a sequence of action leading to a	Goal state	terminal state	both A and B	initial state	С

49	If the agent is acting deterministically, one of the probability will be	1	0	0.5	either A or B	А
50	Insystem the observer may utilise a memory system in order to add information to observers understanding of the system.	fully obsevable	Partially observable	static	known	В
51	In alpha beta pruning alpha stands for	Max	Min	both a and b	none of the above	А
52	In alpha beta pruning beta stands for	Max	Min	both a and b	none of the above	В
53	In chess the outcome win is represent with value	1	0	2	none of the above	А
54	A zero-sum game is (confusingly) defined as one where the total payoff to all players is the for every instance of the game	Equal	Unequal	Zero	Undefined	А
55	In MINIMAX algorithm, the role played by Max is	AND	OR	NOT	NAND	В
56	The space complexity of minimax algorithm is	O(bm)	O(bm)	O(d)	O(b)	A
57	In alpha beta search, α is associated along with path	DFS	MIN	MAX	BFS	С

SERIAL						CORRECT
NUMBER	QUESTION TEXT	OPTION_1	OPTION_2	OPTION_3	OPTION_4	OPTION
1	Hill climbing sometimes called because it	Needy local search	Heuristic local search	Greedy local search	Optimal local	С
	grabs a good neighbor state without thinking ahead				search	
2	blind search is also called as	Uninformed search	Informed search	Simple reflex search	initial Search	А
3	A search algorithm takes as an input and	Input, output	Problem, solution	Solution, problem	Parameters,	В
	returns as an output.				sequence of	
4	an intellignret agent act to increase their	Knowledge	Performance measure	Database mesure	Goal Measure	В
5	Which search method takes less memory?	Breadth-First search	Depth-First Search	Optimal search	Linear Search	В
6	To solve a problem which 2 phase of formulation it	Goal,Start	Goal, Problem	Path,Goal	Path,Problem	В
	should pass?					
7	To solve problem using AI, Process consist of steps.	2	4	5	6	C
8	Which one of the followings is not a part of process for solving problem using AI	Defining the problem	Analysing the problem	Implemenation	sensorless planning	D
9	A* search strategy comes under	Uninformed search	Blind Search	Informed Search	Classical Search	С
10	In BFS the frontier is implemented as a queue.	FIFO	LIFO	FILO	Random	A
11	Hill climbing Search algorithm works like algorithm.	AI	A*	Hilltop	Generate and test	D
12	When is breadth-first search is optimal?	When there is less number of nodes	When all step costs are equal	When all step costs are unequal	When there is less number of	В
13	What is the heuristic function of greedy best-first search?	f(n) = h(n)	f(n) > h(n)	f(n) != h(n)	f(n) < h(n)	A
14	Evaluation function for A* is f(n)=+	h(n)+h(m)	h(n)+g(n)	h(n)+c(n)	g(n)+h(m)	В

15	Greedy approach in hill climbing means choosing best possible solution.	Hilltop	Complex	Otimal	Nearest	D
16	behavior means something which can be determined with set of logicla proofs and actios.	Smart	Bounded	Deterministic	Ridge	С
17	simulated annealing is an efective and general form of	Optimization	Hill climbing	Inspiration	Agent	A
18	AND/OR is implemented in the problem	Deterministic	Non-Deterministic	Otimal	Hill Climbing	В

SERIAL NUMBER	QUESTION TEXT	OPTION_1	OPTION_2	OPTION_3	OPTION_4	CORRECT OPTION
1	returns the set of legal moves in a state.	test	actions	utility	player	В
2	A utility function is also called :	Objective function	payoff functions	none of the above	both A and B	D
3	A function defines the final numeric value for game that ends in terminal states for a player p is called	primary function	secondary function	utility function	optimum function	С
4	game tree defined by	initial state	actions	result	all of the above	D
5	In a normal search problem , the optimal solution would be a sequence of action leading to a	Goal state	terminal state	both A and B	initial state	С
6	If the agent is acting deterministically, one of the probability will be	1	0	0.5	either A or B	А
7	Insystem the observer may utilise a memory system in order to add information to observers understanding of the system.	fully obsevable	Partially observable	static	known	В
8	In alpha beta pruning alpha stands for	Max	Min	both a and b	none of the above	А
9	In alpha beta pruning beta stands for	Max	Min	both a and b	none of the above	В
10	In chess the outcome win is represent with value	1	0	2	none of the above	А
11	A zero-sum game is (confusingly) defined as one where the total payoff to all players is the for every instance of the game	Equal	Unequal	Zero	Undefined	А
12	In MINIMAX algorithm, the role played by Max is	AND	OR	NOT	NAND	В
13	The space complexity of minimax algorithm is	O(bm)	O(bm)	O(d)	O(b)	А
14	In alpha beta search, α is associated along with path	DFS	MIN	MAX	BFS	С

SERIAL	UNIT	۲ LEVEL(AD
NUMBER	NUMBER	/HD)
1	IV	AD
2	IV	
3	IV	
4	IV	
5	IV	
6	IV	
7	IV	
8	IV	
9	IV	
10	IV	
11	IV	
12	IV	
13	IV	
14	IV	
15	IV	
16	IV	
17	IV	
18	IV	
19	IV	
20	IV	
21	IV	
22	IV	
23	IV	
24	IV	
25	IV	
26	IV	
27	IV	
28	IV	
29	IV	
30	IV	
31	IV	
32	IV	
33	IV	
34	IV	
35	IV	
36	IV	
3/ 20	IV	
38 20		
39		
40 //1		
41	IV	
74	1 1 1	

43	IV	
44	IV	
45	IV	
46	IV	
47	IV	
48	IV	
49	IV	
50	IV	
51	IV	
52	IV	
53	IV	
54	IV	
55	IV	
56	IV	
57	IV	
58	IV	
59	IV	
60	IV	
61	IV	
62	IV	
63	IV	
64	IV	
65	IV	

QUESTION TEXT

OPTION_1	OPTION_2	OPTION_3	OPTION_4	RRECT OPTI	ION

		DIFFICULT
		Y
SERIAL	UNIT	LEVEL(AD
NUMBER	NUMBER	/HD)
1	V	AD
2	V	
3	V	
4	V	
5	V	
6	V	
7	V	
8	V	
9	V	
10	V	
11	V	
12	V	
13	V	
14	V	
15	V	
16	V	
17	V	
18	V	
19	V	
20	V	
21	V	
22	V	
23	V	
24	V	
25	V	
26	V	
27	V	
28	V	
29	V	
30	V	
31	V	
32	V	
33	V	
34	V	
35	V	
36	V	
3/ 20	V	
38 20	V V	
33	v \/	
40 ⊿1	v \/	
42	V	
	· ·	

43	V	
44	V	
45	V	
46	V	
47	V	
48	V	
49	V	
50	V	
51	V	
52	V	
53	V	
54	V	
55	V	
56	V	
57	V	
58	V	
59	V	
60	V	
61	V	
62	V	
63	V	
64	V	
65	V	

OUESTION TEXT			

Г

OPTION_1OPTION_2OPTION_3OPTION_4RECT OPTIONIIIIIIIIIIIIII <tdi< td=""><tdi< td="">IIIIII<tdi< td=""><tdi< td="">IIIII<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">IIIII<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">IIIII<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">III<tdi< td="">I<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">II<tdi< td="">I<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">II<tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td=""><tdi< td="">I<td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<></tdi<>						
Image <td< th=""><th>OPTION_1</th><th>OPTION_2</th><th>OPTION_3</th><th>OPTION_4</th><th>RRECT OPT</th><th></th></td<>	OPTION_1	OPTION_2	OPTION_3	OPTION_4	RRECT OPT	
Image 						
Image <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td></td<>						
Image: section of the section of th						
Image 						
ImageI						
Image 						
Image <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>						
Image: section of the section of th						
Image: series of the series						
Image: series of the series						
Image: series of the series						
Image: set of the						
Image: series of the series						
Image: selection of the						
Image: selection of the						
Image: selection of the						
Image: state stat						
Image: state stat						
Image: select						
